
Question number	Answer	Notes	Marks
1 (a)	hydrated copper(ill) sulfate open tube	ACCEPT a flame if >1 arrow drawn, all must be correct	1
	NB the arrow must point to the solid		
(b)	to condense the (water) vapour / steam	ACCEPT to cool the water vapour ACCEPT to cool/condense the gas (given off) IGNORE to condense the water IGNORE to stop the water escaping as water vapour IGNORE to condense the product	1
(c)	M1 $n(CuSO_4.5H_2O) = 2.50 \div 250 \text{ OR } 0.01$ (mol)	mark csq throughout	3
	M2 n(H ₂ O) = 0.01 x 5 OR 0.05 (mol)	correct final	
	M3 mass of water = $(0.05 \times 18) = 0.9(0)$ (g)	answer (with no working) scores 3	
	OR M1 5 x 18 OR 90	ACCEPT calculations that use A_r of Cu as	
	M2 250 (g) → 90 (g)	63.5 (giving 0.9(05) (g) as a	
	M3 2.50 (g) → 0.9(0) (g)	final answer)	
	OR	M2 subsumes M1 for all methods	
	M1 5 x 18 OR 90		
	M2 90 ÷ 250 x 100 (%) → 36 (%)		
	M3 36 (%) x 2.50 (g) → 0.9(0) (g)		

Question number	Answer		Notes	Marks
2 (a)	SolidAmountKHCO3 0.080 K_2O 0.059 KOH 0.099 K_2CO_3 0.040 all four correct = 2 marksthree correct = 1 mark		ALLOW values (corrected rounded) from 1 sf up to calculator value	2
(b)	 M1 equation 3 M2 the (mole) ratio of KHCO₃ to K₂CO₃ /reactant to product is 2:1 		mark csq on amounts given in part (a)	2

Question number	Answer	Notes	Marks
3 (a) i	cross in box A (zinc sulfate)		1
ii	cross in box B (iron) cross in box C (magnesium)	Apply list principle - 3 crosses = max 1 4 or 5 crosses = 0 marks	1 1
3 (b)	burns with a pop/squeak OR use burning/lit splint/flame to see if pop/squeak	Must be reference to test and result Reference to splint/match with no indication of flame is not enough Reject reference to glowing splint Ignore flame extinguished 'Squeaky pop test' on its own is not sufficient	1
3 (c)	2 (1) 2	Accept multiples and fractions	1
3 (d) i	cross in box 3		1
ii	reversible / can go in both directions / can go backwards and forwards	Ignore references to equilibrium Ignore references to other reaction types (e.g. hydration / oxidation / exothermic) Accept either equation with ≠	1
		Total	7

4 (a) (i) measuring cylinder 1 (ii) M1 44 answers in other correct units, e.g. 0.044 dm ³ 1 M2 cm ³ ml 1 (iii) M1 44 × 0.01(0) 1000 ml 1 M2 0.00044(0) 0.44 for 1 mark only correct answer with no working for 2 marks 0.0004 (b) Zinc because M1 1 mol zinc reacts with 2 mol HCl 1 M2 only 0.005 mol of zinc are needed 1 1 M1 is standalone M2 is dep on zinc given as being in excess 1 1	Question number	Answer	Accept	Reject	Marks
M2 cm³ correct units, e.g. 0.044 dm³ 1 (iii) M1 $\frac{44 \times 0.01(0)}{1000}$ ml 1 M2 0.00044(0) 0.44 for 1 mark only correct answer with no working for 2 marks 0.0004 (b) zinc because 1 M1 1 mol zinc reacts with 2 mol HCl 1 M2 only 0.005 mol of zinc are needed 1 M1 is standalone 1	4 (a) (i)	measuring cylinder			1
M2 cm ³ 0.044 dm ³ 1 M1 44 × 001(0) 1000 ml 1 M2 0.00044(0) 0.44 for 1 mark only correct answer with no working for 2 marks 0.0004 (b) zinc because 1 M1 1 mol zinc reacts with 2 mol HCl 1 M2 only 0.005 mol of zinc are needed 1	(ii)	M1 44			1
(iii) M1 $\frac{44 \times 0.01(0)}{1000}$ 1 M2 0.00044(0) 0.44 for 1 mark only 0.0004 Mark csq on answer to (a)(ii) 0.44 for 1 mark only 1 (b) zinc because 0.0005 mol of zinc are needed 1 M2 only 0.005 mol of zinc are needed 1 1		M2 cm ³	0.044 dm ³		1
Mark csq on answer to (a)(ii) 0.44 for 1 mark only correct answer with no working for 2 marks 1 (b) zinc because 1 M1 1 mol zinc reacts with 2 mol HCl 1 M2 only 0.005 mol of zinc are needed 1 M1 is standalone 1	(iii)				1
working for 2 marks working for 2 marks (b) zinc because 1 M1 1 mol zinc reacts with 2 mol HCl 1 M2 only 0.005 mol of zinc are needed 1 M1 is standalone 1			0.44 for 1 mark only	0.0004	1
M1 1 mol zinc reacts with 2 mol HCl 1 M2 only 0.005 mol of zinc are needed 1 M1 is standalone 1					
M2 only 0.005 mol of zinc are needed 1 M1 is standalone	(b)	<u>zinc</u> because			
M1 is standalone		M1 1 mol zinc reacts with 2 mol HCl			1
		M2 only 0.005 mol of zinc are needed			1
(c) (i)(rate) increases/faster reactionless time for reaction to take placefaster time1	(c) (i)	(rate) increases/faster reaction		faster time	1
(ii) no effect/same volume (of hydrogen) produced none/no change 1	(ii)	no effect/same volume (of hydrogen) produced	none/no change		1
Total 9				Total	0

Question number	Answer	Notes	Marks
(b) (i)	25 (cm ³)	accept anomalous point based on graph drawn	1
(ii)	M1 the volumes (of gas) are the same	accept `no more gas is being produced/collected (after 35 cm ³)'	2
	M2 therefore the reaction has finished / <u>all</u> of the solid/MgCO ₃ has reacted / the solid/MgCO ₃ has been used up	reject `all of the reactants have reacted' reject `all of the acid has reacted' ignore refs to MgCO ₃ dissolving accept refs to MgCO ₃ being limiting reagent	
(iii)	value correctly read to nearest gridline from candidate's graph		1
(iv)	value correctly read to nearest gridline from candidate's graph		1

Question number	Answer	Notes	Marks
6 (a) (i)	$2HgO \rightarrow 2Hg + O_2$	accept halves and multiples	1
(ii)	redox	accept `(thermal) decomposition' ignore `oxidation' allow `reduction'	1
(b) (i)	(tap / dropping / separating) funnel	reject `filter / thistle funnel'	1
(ii)	(the gas / it) contains air (from the conical flask)	accept `contains impurities' or ref to possible named impurity eg nitrogen reject `water vapour' allow `contains less <u>oxygen</u> '	1
(c)	M1 perform reaction with and without catalyst M2 keep remaining variables (eg concentration or volume of hydrogen peroxide / temperature) the same M3 measure time (to fill the gas jar with oxygen) M4 <u>oxygen produced</u> more quickly/at a faster rate/in a shorter time (in experiment) with catalyst OR M1 weigh a sample of manganese(IV) oxide	accept: M1 perform reaction with and without catalyst M2 <u>oxygen produced</u> more quickly/at a faster rate/in a shorter time (in experiment) with catalyst M3 weigh a sample of manganese(IV) oxide (before putting it into the conical flask) M4 the mass at the end of the reaction should be the same as at the start	4

	 (before putting it into the conical flask) M2 filter (to remove the solid) M3 dry the solid (and re-weigh it) M4 the mass should be the same as before 		
(d) (i)	$SO_2 + H_2O \rightarrow H_2SO_3$	accept SO ₂ + H ₂ O + $\frac{1}{2}O_2 \rightarrow H_2SO_4$ allow products shown as correct ions	1
(ii)	 M1 (Universal Indicator turns) orange/yellow M2 (the solution/it) is acidic / contains hydrogen ions / contains H⁺ ions 	accept `red' allow `contains sulfurous / sulfuric acid'	2